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Abstract

In this article, we concerned with a logarithmic p-Laplacian equation with distributed internal
delay. Firstly, we obtain the global existence of solutions by utilizing the well-depth method.
Later, under appropriate assumptions on the weight of the delay and that of frictional damping,
we establish the exponential decay. Moreover, we obtain the blow up results for negative initial
energy.
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1 Introduction

In this work, we deal with the logarithmic p-Laplacian equation with distributed delay as follows:
utt −∆u− div

(
|∇u|p−2∇u

)
+ µ1ut (x, t) +

∫ τ2
τ1
µ2 (s)ut (x, t− s) ds

= u |u|q−2
ln |u|k , x ∈ Ω, t > 0,

u (x, t) = 0, x ∈ ∂Ω,
ut (x,−t) = f0 (x, t) , in (0, τ2) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω. k, µ1 are positive

constants, the term ∆pu = div
(
|∇u|p−2∇u

)
is called p-Laplacian, the integral term denotes the

distributed delay for 0 ≤ τ1 < τ2 and µ2 : [τ1, τ2] → [0,∞) is a bounded function. u0, u1, f0 are
the initial data functions to be specified later.

Problems about the mathematical behavior of solutions for PDEs with time delay effects have
become interesting for many authors mainly because time delays often appear in many practical
problems such as thermal, economic phenomena, physical, chemical, biological, mechanical applica-
tions, electrical engineering systems and medicine [12]. Generally, logarithmic nonlinearity appears
in nuclear physics, inflation cosmology, geophysics and optics (see [3, 8]).

Firstly, for the literature review, we begin with the works of Birula and Mycielski [4, 5]. They
investigated the following equation with logarithmic term:

utt − uxx + u− εu ln |u|2 = 0. (1.2)

They are the pioneer of these kind of problems. They established that, in any number of dimensions,
wave equations including the logarithmic term have localized, stable, soliton-like solutions.
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In 1980, Cazenave and Haraux [6] concerned with the following equation:

utt −∆u = u ln |u|k . (1.3)

The authors obtained the existence and uniqueness of the solutions of the equation (1.3). Gorka
[8] obtained the global existence for one-dimensional of the equation (1.3). Bartkowski and Gorka
[3], studied the weak solutions and established the existence results.

In 1986, Datko et al. [7] showed that, a small delay effect is a source of instability. In [14],
Nicaise and Pignotti studied the following equation:

utt −∆u+ a0ut (x, t) + aut (x, t− τ) = 0, (1.4)

where a0, a > 0. The authors established that, under the condition 0 ≤ a ≤ a0, the system is
exponentially stable. They proved a sequence of delays that shows the solution is instable in the
case a ≥ a0.

In [15], Nicaise and Pignotti introduced the distributed delay:∫ τ2

τ1

µ2 (s)ut (x, t− s) ds. (1.5)

Under appropriate conditions, they established the exponential stability results of the wave equation
with boundary or internal distributed delay.

Messaoudi and Kafini [11], studied the wave equation with delay as follows:

utt − div
(
|∇u|m−2∇u

)
+ µ1ut (x, t) + µ2ut (x, t− τ) = b |u|p−2

u. (1.6)

Under suitable conditions, they proved the global nonexistence of the equation (1.6).
Nhan and Truong [13], concerned with the following equation with logarithmic term:

ut − div
(
|∇u|p−2∇u

)
−∆ut = |u|p−2

u ln |u| . (1.7)

They proved existence, decay and blow up results for the equation (1.7).
In [10], Kafini and Messaoudi studied the following wave equation with delay and logarithmic

terms:
utt −∆u+ µ1ut (x, t) + µ2ut (x, t− τ) = |u|p−2

u log |u|k . (1.8)

They established the local existence and blow up results of the equation (1.8).

In the absence of the p-Laplacian term (div
(
|∇u|p−2∇u

)
), in [9], Kafini studied the following

wave equation:

utt −∆u+ µ1ut (x, t) +

∫ τ2

τ1

µ2 (s)ut (x, t− s) = u |u|p−2
ln |u|k , (1.9)

the author established the local and global existence. Moreover, he proved the exponential decay
of solutions for the equation (1.9). Recently, some other authors studied hyperbolic type equations
(see [2, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]).
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In this paper, we study the global existence, exponential decay and blow up of solutions for
the logarithmic p-Laplacian equation (1.1) with distributed delay, motivated by above works. To
our best knowledge, there is no research, related to the logarithmic p-Laplacian equation (1.1)

with distributed delay term (
∫ τ2
τ1
µ2 (s)ut (x, t− s) ds) and logarithmic (u |u|q−2

ln |u|k) source term,
therefore, our paper is the generalization of the previous studies.

This work consists of five sections in addition to the introduction: Firstly, in Section 2, we give
some needed materials. Then, in Section 3, we get the global existence results by the well-depth
method. Moreover, in Section 4, we prove the exponential decay of solutions. Finally, in Section 5,
we establish the blow up results for negative initial energy.

2 Preliminaries

In this section, we give some materials for our main result. As usual, the notation ‖.‖p denotes Lp

norm, and (., .) is the L2 inner product. In particular, we write ‖.‖ instead of ‖.‖2.
Let Bp > 0 be the constant satisfying [1]

‖v‖2 ≤ Bq ‖∇v‖q , for v ∈ H1
0 (Ω) . (2.1)

Similar to the [14], we introduce the new variable

z (x, ρ, s, t) = ut (x, t− ρs) in Ω× (0, 1)× (τ1, τ2)× (0,∞) .

Therefore, we have

szt (x, ρ, s, t) + zρ (x, ρ, s, t) = 0 in Ω× (0, 1)× (τ1, τ2)× (0,∞) .

Hence, the problem (1.1) is equivalent to:

utt −∆u− div
(
|∇u|p−2∇u

)
+ µ1ut (x, t)

+
∫ τ2
τ1
µ2 (s) z (x, 1, s, t) ds = u |u|q−2

ln |u|k in Ω× (τ1, τ2)× (0,∞)

szt (x, ρ, s, t) + zρ (x, ρ, s, t) = 0 in Ω× (0, 1)× (τ1, τ2)× (0,∞)
z (x, ρ, s, 0) = f0 (x,−ρs) in Ω× (0, 1)× (τ1, τ2)
u (x, t) = 0 on ∂Ω× (0,∞)
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) in Ω.

(2.2)
The energy functional related to the problem (2.2) is, for ∀t ≥ 0,

E (t) =
1

2
‖ut‖2 +

1

2
‖∇u‖2 +

1

p
‖∇u‖pp +

k

q2
‖u‖qq

+
1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s (ξ + µ2 (s)) |z (x, ρ, s, t)|2 dsdρdx

−1

q

∫
Ω

|u|q ln |u|k dx, (2.3)

where ξ is a positive constants satisfying

µ1 >

∫ τ2

τ1

µ2 (s) ds+
ξ

2
(τ2 − τ1) , (2.4)
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under the condition

µ1 >

∫ τ2

τ1

µ2 (s) ds.

The following lemma shows that the related energy functional of the problem is nonincreasing:

Lemma 2.1. Suppose that (2.4) holds. Then, along the solution of (2.2) and for some C0 ≥ 0, we
get

E′ (t) ≤ −C0

∫
Ω

(
|ut|2 + |z (x, 1, s, t)|2

)
dx ≤ 0. (2.5)

Proof. By multiplying the first equation in (2.2) by ut and integrating over Ω and the second
equation in (2.2) by (ξ + µ2 (s)) z and integrating over (τ1, τ2)× (0, 1)×Ω with respect to s, ρ and
x, summing up, we get

d

dt

(
1
2 ‖ut‖

2
+ 1

2 ‖∇u‖
2

+ 1
p ‖∇u‖

p
p + k

q2 ‖u‖
q
q −

1
q

∫
Ω
|u|q ln |u|k dx

+ 1
2

∫
Ω

∫ 1

0

∫ τ2
τ1
s (ξ + µ2 (s)) |z (x, ρ, s, t)|2 dsdρdx

)

= −µ1

∫
Ω

|ut|2 dx−
∫

Ω

∫ 1

0

∫ τ2

τ1

(ξ + µ2 (s)) zzρ (x, ρ, s, t) dsdρdx

−
∫

Ω

ut

∫ τ2

τ1

µ2 (s) z (x, 1, s, t) dsdx. (2.6)

Now, we handle the last two terms of the right-hand side of (2.6) as:

−
∫

Ω

∫ 1

0

∫ τ2

τ1

(ξ + µ2 (s)) zzρ (x, ρ, s, t) dsdρdx

= −1

2

∫
Ω

∫ τ2

τ1

∫ 1

0

∂

∂ρ

[
(ξ + µ2 (s)) |z (x, ρ, s, t)|2

]
dρdsdx

=
1

2

(∫ τ2

τ1

µ2 (s) ds+ ξ (τ2 − τ1)

)∫
Ω

|ut|2 dx

−1

2

∫
Ω

∫ τ2

τ1

(ξ + µ2 (s)) |z (x, 1, s, t)|2 dsdx

and

−
∫

Ω

ut

∫ τ2

τ1

µ2 (s) z (x, 1, s, t) dsdx

≤ 1

2

(∫ τ2

τ1

µ2 (s) ds

∫
Ω

|ut|2 dx+

∫ τ2

τ1

µ2 (s) ds

∫
Ω

|z (x, 1, s, t)|2 dx
)

.

Therefore, we get

dE (t)

dt
≤ −

(
µ1 −

∫ τ2

τ1

µ2 (s) ds− ξ

2
(τ2 − τ1)

)∫
Ω

|ut|2 dx

−ξ
2

∫
Ω

∫ τ2

τ1

|z (x, 1, s, t)|2 dsdx.
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By using (2.4), we obtain, for some C0 > 0,

E′ (t) ≤ −C0

∫
Ω

(
|ut|2 +

∫ τ2

τ1

|z (x, 1, s, t)|2 ds
)
dx ≤ 0.

q.e.d.

3 Global existence

In this section, we establish that the solution of (2.2) is uniformly bounded and global in time. For
this aim, we set

I (t) = ‖∇u‖2 + ‖∇u‖pp −
∫

Ω

|u|q ln |u|k dx,

J (t) =
1

2
‖∇u‖2 +

1

p
‖∇u‖pp +

k

q2
‖u‖qq

+
1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s (ξ + µ2 (s)) z2dsdρdx− 1

q

∫
Ω

|u|q ln |u|k dx. (3.1)

Therefore,

E (t) = J (t) +
1

2
‖ut‖2 .

Lemma 3.1. Assume that the initial data u0, u1 ∈ H1
0 (Ω)× L2 (Ω) satisfying

I (0) > 0 and β = min

{
kCq+l

(
2qE (0)

q − 2

) q−2+l
2

, kCq+l

(
pq

q − p
E (0)

) q−p+l
p

}
< 1. (3.2)

Then, I (t) > 0, for any t ∈ [0, T ].

Proof. Since I (0) > 0 we infer by continuity that there exists T ∗ ≤ T such that I (t) ≥ 0 for all
t ∈ [0, T ∗]. This implies that, for all t ∈ [0, T ∗],

J (t) =
q − 2

2q
‖∇u‖2 +

q − p
pq
‖∇u‖pp +

k

q2
‖u‖qq

+
1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s (ξ + µ2 (s)) z2dsdρdx+
1

q
I (t) .

J (t) ≥ q − 2

2q
‖∇u‖2 +

q − p
pq
‖∇u‖pp .

Hence,

‖∇u‖2 ≤ 2q

q − 2
J (t) ≤ 2q

q − 2
E (t) ≤ 2q

q − 2
E (0) , (3.3)

and
‖∇u‖pp ≤

pq

q − p
J (t) ≤ pq

q − p
E (t) ≤ pq

q − p
E (0) . (3.4)
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By using the fact that ln |u| < |u|l, we get∫
Ω

|u|q ln |u| dx ≤
∫

Ω

|u|q+l dx, (3.5)

where l is choosen to be 0 < l < 2
n−2 , such that

q + l <
2n− 2

n− 2
+ l <

2n

n− 2
.

Therefore, the embedding H1
0 (Ω) ↪→ Lq+l (Ω) and Lp (Ω) ↪→ L2 (Ω) satisfies∫

Ω

|u|q ln |u| dx ≤ Cq+l ‖∇u‖q+l

= Cq+l ‖∇u‖2 ‖∇u‖q−2+l

= Cq+l ‖∇u‖2
(
‖∇u‖2

) q−2+l
2

≤ Cq+l

(
2qE (0)

q − 2

) q−2+l
2

‖∇u‖2 , (3.6)

and

∫
Ω

|u|q ln |u| dx ≤ Cq+l ‖∇u‖q+l

= Cq+l ‖∇u‖p ‖∇u‖q−p+l

≤ Cq+l ‖∇u‖pp ‖∇u‖
q−p+l
p

= Cq+l ‖∇u‖pp
(
‖∇u‖pp

) q−p+l
p

≤ Cq+l

(
pq

q − p
E (0)

) q−p+l
p

‖∇u‖pp , (3.7)

here Cq+l is the embedding constant.
As a result, by (3.1) and (3.2), we infer that

I (t) > ‖∇u‖2 + ‖∇u‖pp − β
(
‖∇u‖2 + ‖∇u‖pp

)
> 0, ∀t ∈ [0, T ∗] . (3.8)

By repeating this procedure, T ∗ can be extended to T . q.e.d.

Theorem 3.2. If the initial data u0, u1 satisfy the conditions of Lemma 3.1, then the solution of
(2.2) is uniformly bounded and global in time.
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Proof. It suffices to show that ‖∇u‖2 + ‖∇u‖pp + ‖ut‖2 is bounded independently of t. We see that,

E (0) ≥ E (t) =
1

2
‖ut‖2 + J (t)

≥ 1

2
‖ut‖2 +

k

q2
‖u‖qq

+
1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s (ξ + µ2 (s)) z2dsdρdx+
1

q
I (t)

≥ 1

2
‖ut‖2 +

1

q
(1− β)

(
‖∇u‖2 + ‖∇u‖pp

)
.

Thus,
‖∇u‖2 + ‖∇u‖pp + ‖ut‖2 ≤ CE (0) ,

where C is a positive constant depending only on k, p and Cq+1. q.e.d.

4 Exponential decay

In this section, we establish the decay results. Firstly, we have the lemmas as follows:

Lemma 4.1. [9] The functional

F1 (t) =

∫
Ω

∫ 1

0

∫ τ2

τ1

se−ρs (ξ + µ2 (s)) |z (x, ρ, s, t)|2 dsdρdx

satisfies, along the solution of (2.2), for some c1, c2 > 0,

F ′1 (t) ≤ c1 ‖ut‖2 − c2
∫

Ω

∫ 1

0

∫ τ2

τ1

s (ξ + µ2 (s)) |z (x, ρ, s, t)|2 dsdρdx. (4.1)

Lemma 4.2. The functional

F2 (t) = NE (t) + ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

|u|2 dx

satisfies, along the solution of (2.2)

F ′2 (t) ≤ − (NC0 − ε) ‖ut‖2 − ε (1− β − δ) ‖∇u‖2

−ε (1− β) ‖∇u‖pp −
(
NC0 − ε

c∗
4δ

)∫
Ω

∫ τ2

τ1

z2 (x, 1, s, t) dsdx, (4.2)

where N , α and ε are positive constants.

Proof. Differentiation, by using equations in (2.2), satisfies

F ′2 (t) ≤ −NC0

∫
Ω

(
|ut|2 + |z (x, 1, s, t)|2

)
dx

+ε

(∫
Ω

|ut|2 dx−
∫

Ω

|∇u|2 dx+

∫
Ω

|u|q ln |u|k dx
)

−ε ‖∇u‖pp − ε
∫

Ω

u

∫ τ2

τ1

µ2 (s) z (x, 1, s, t) dsdx. (4.3)
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Utilizing Young’s inequality and the boundness property of µ2 (s), we obtain, for any δ > 0 and
some c∗ > 0,

−
∫

Ω

u

∫ τ2

τ1

µ2 (s) z (x, 1, s, t) dsdx

≤ δ ‖∇u‖2 +
c∗
4δ

∫
Ω

∫ τ2

τ1

z2 (x, 1, s, t) dsdx. (4.4)

q.e.d.

Theorem 4.3. Assume that (3.2) holds. Then, there exist two positive constants c3 and c4 such
that

E (t) ≤ c3e−c4t.
Proof. Setting

F3 (t) = F1 (t) + F2 (t) .

It is easy to verify, for ε small enough, that

F3 (t) ∼ E (t) . (4.5)

By (4.1) and (4.2), we obtain

F ′3 (t) ≤ − (NC0 − ε− c1) ‖ut‖2 − ε (1− β − δ) ‖∇u‖2

−ε (1− β) ‖∇u‖pp −
(
NC0 − ε

c∗
4δ

)∫
Ω

∫ τ2

τ1

z2 (x, 1, s, t) dsdx

−c2
∫

Ω

∫ 1

0

∫ τ2

τ1

s (ξ + µ2 (s)) |z (x, ρ, s, t)|2 dsdρdx. (4.6)

Since β < 1, choosing δ small enough, such that α = 1− β − δ > 0.
For some ω > 0, the embedding H1

0 (Ω) ↪→ Lq (Ω) satisfies

‖u‖qq ≤ C ‖∇u‖q2

≤ C
(
‖∇u‖2

) q−2
2 ‖∇u‖2

≤ C (E (0))
q−2
2 ‖∇u‖2

≤ ω ‖∇u‖2 ,

or

−εαω
−1

2
‖u‖qq ≥ −

εα

2
‖∇u‖22 .

Hence, (4.6) takes the form

F ′3 (t) ≤ − (NC0 − ε− c1) ‖ut‖2 −
εα

2
‖∇u‖2 − εαω−1

2
‖u‖qq

−ε (1− β) ‖∇u‖pp −
(
NC0 − ε

cp
4δ

)∫
Ω

∫ τ2

τ1

z2 (x, 1, s, t) dsdx

−c2
∫

Ω

∫ 1

0

∫ τ2

τ1

s (ξ + µ2 (s)) |z (x, ρ, s, t)|2 dsdρdx. (4.7)
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Whence δ is fixed, choosing N to be large enough, such that

NC0 − ε− c1 > 0, NC0 − ε
cp
4δ

> 0 and 1− β > 0.

Therefore, (4.7) takes the form, for some C > 0,

F ′3 (t) ≤ −C
[
‖ut‖2 + ‖∇u‖2 + ‖∇u‖pp + ‖u‖qq +

∫
Ω

∫ 1

0

∫ τ2

τ1

s (ξ + µ2 (s)) z2dsdρdx

]
≤ −CE (t) .

By the equivalence relation (4.5) and a simple integration over (0, t), our result proved. q.e.d.

5 Blow up

In this section, we prove the blow up results for negative initial energy. We have the assumption:
µ2 : [τ1, τ2]→ R is an L∞ function such that:(

2δ − 1

2

)∫ τ2

τ1

|µ2 (s)| ds ≤ µ1, δ >
1

2
. (5.1)

Lemma 5.1. Suppose that (5.1) hold. Let u be a solution of (2.2). Then, K (t) is nonincreasing,
such that

K (t) =
1

2
‖ut‖2 +

1

2
‖∇u‖2 +

1

p
‖∇u‖pp +

k

q2
‖u‖qq

−1

q

∫
Ω

|u|q ln |u|k dx+
1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s |µ2 (s)|
∣∣z2 (x, ρ, s, t)

∣∣ dsdρdx, (5.2)

which satisfies

K′ (t) ≤ −c1
(
‖ut‖2 +

∫
Ω

∫ τ2

τ1

|µ2 (s)|
∣∣z2 (x, 1, s, t)

∣∣ dsdx) . (5.3)

Proof. By multiplying the first equation of (2.2) by ut and integrating over Ω , we obtain

d

dt

{
1
2 ‖ut‖

2
+ 1

2 ‖∇u‖
2

+ 1
p ‖∇u‖

p
p

+ k
q2 ‖u‖

q
q −

1
q

∫
Ω
|u|q ln |u|k dx

}

= −µ1 ‖ut‖2 −
∫

Ω

ut

∫ τ2

τ1

|µ2 (s)| |z (x, 1, s, t)| dsdx, (5.4)



44 Erhan Pişkin, Hazal Yüksekkaya

and

d

dt

1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s |µ2 (s)| z2 (x, ρ, s, t) dsdρdx

= −1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

2 |µ2 (s)| zzρdsdρdx

=
1

2

∫
Ω

∫ τ2

τ1

|µ2 (s)| z2 (x, 0, s, t) dsdx

−1

2

∫
Ω

∫ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx

=
1

2

(∫ τ2

τ1

|µ2 (s)| ds
)
‖ut‖2

−1

2

∫
Ω

∫ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx. (5.5)

Therefore,

d

dt
K (t) = −µ1 ‖ut‖2 −

∫
Ω

∫ τ2

τ1

|µ2 (s)|utz (x, 1, s, t) dsdx

+
1

2

(∫ τ2

τ1

|µ2 (s)| ds
)
‖ut‖2

−1

2

∫
Ω

∫ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx. (5.6)

From (5.4) and (5.5), we get (5.2). By using Young’s inequality, (5.1) and (5.6), we obtain (5.3).
As a result, the proof is completed. q.e.d.

To establish our main result, we define

H (t) = −K (t) = −1

2
‖ut‖2 −

1

2
‖∇u‖2 − 1

p
‖∇u‖pp

− k

q2
‖u‖qq +

1

q

∫
Ω

|u|q ln |u|k dx

−1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s |µ2 (s)|
∣∣z2 (x, ρ, s, t)

∣∣ dsdρdx. (5.7)

Similar to the work of [10], we have the lemmas as follows:

Lemma 5.2. For C > 0,(∫
Ω

|u|q ln |u|k dx
)s/q

≤ C
[∫

Ω

|u|q ln |u|k dx+ ‖∇u‖22 + ‖∇u‖pp

]
satisfies, for any u ∈ Lq+1 (Ω) and 2 ≤ s ≤ q, provided that

∫
Ω
|u|q ln |u|k dx ≥ 0.
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Lemma 5.3. Depending on Ω only, suppose that C > 0, so that

‖u‖22 ≤ C

[(∫
Ω

|u|q ln |u|k dx
)2/q

+ ‖∇u‖4/q2 + ‖∇u‖4/pp

]
, (5.8)

provided that
∫

Ω
|u|q ln |u|k dx ≥ 0.

Lemma 5.4. Depending on Ω only, assume that C > 0, such that

‖u‖sq ≤ C
[
‖u‖qq + ‖∇u‖22 + ‖∇u‖pp

]
, (5.9)

for any u ∈ Lq (Ω) and 2 ≤ s ≤ q.

Theorem 5.5. Assume that (5.1) holds. Assume further that{
p < q ≤ pn

n−p , if n > p

q > p, if n ≤ p,

and
K (0) < 0. (5.10)

Thus, the solution of (2.2) blows up in finite time.

Proof. By (5.3), we know that
K (t) ≤ K (0) < 0.

Thus,

H ′ (t) = −K′ (t)

≥ c1

(
‖ut‖2 +

∫
Ω

∫ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx

)
≥ c1

∫
Ω

∫ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx ≥ 0 (5.11)

and

0 < H (0) ≤ H (t) ≤ 1

q

∫
Ω

|u|q ln |u|k dx. (5.12)

We introduce

L (t) = H1−α (t) + ε

∫
Ω

uutdx+
µ1ε

2

∫
Ω

u2dx, t ≥ 0, (5.13)

where ε > 0 to be specified later and

2 (q − 2)

q2
< α <

q − 2

2q
< 1 and 2 < αpq < pq − 4. (5.14)
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Multiplying the first equation in (2.2) by u and with a derivative of (5.13), we have

L′ (t) = (1− α)H−α (t)H ′ (t) + ε ‖ut‖2

+ε

∫
Ω

uuttdx+ εµ1

∫
Ω

uutdx

= (1− α)H−α (t)H ′ (t) + ε ‖ut‖2 − ε ‖∇u‖2 − ε ‖∇u‖pp

−ε
∫

Ω

∫ τ2

τ1

|µ2 (s)| |uz (x, 1, s, t)| dsdx+ ε

∫
Ω

|u|q ln |u|k dx. (5.15)

Thanks to Young’s inequality, we get

ε

∫
Ω

∫ τ2

τ1

|µ2 (s)|uz (x, 1, s, t) dsdx

≤ ε

[
δ1

(∫ τ2

τ1

|µ2 (s)| ds
)
‖u‖2

+
1

4δ1

∫
Ω

∫ τ2

τ1

|µ2 (s)|
∣∣z2 (x, 1, s, t)

∣∣ dsdx] . (5.16)

Hence, by (5.15), we obtain

L′ (t) ≥ (1− α)H−α (t)H ′ (t) + ε ‖ut‖2 − ε ‖∇u‖2 − ε ‖∇u‖pp

−εδ1
(∫ τ2

τ1

|µ2 (s)| ds
)
‖u‖2 − ε

4δ1

∫
Ω

∫ τ2

τ1

|µ2 (s)|
∣∣z2 (x, 1, s, t)

∣∣ dsdx
+ε

∫
Ω

|u|q ln |u|k dx. (5.17)

By using (5.11) and setting δ1 such that 1
4δ1c1

= κH−α (t), we obtain

L′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t) + ε ‖ut‖2

−ε ‖∇u‖2 − ε ‖∇u‖pp − ε
Hα (t)

4c1κ

(∫ τ2

τ1

|µ2 (s)| ds
)
‖u‖2

+ε

∫
Ω

|u|q ln |u|k dx. (5.18)

For 0 < a < 1, by (5.18), we have

L′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t) + εa

∫
Ω

|u|q ln |u|k dx+ ε
q (1− a) + 2

2
‖ut‖2

+ε

(
q (1− a)

2
− 1

)
‖∇u‖2 + ε

(
q (1− a)

p
− 1

)
‖∇u‖pp

+
ε (1− a) k

q
‖u‖qq − ε

Hα (t)

4c1κ

(∫ τ2

τ1

|µ2 (s)| ds
)
‖u‖2 + εq (1− a)H (t)

+
εq (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s |µ2 (s)| |z (x, ρ, s, t)|2 dsdρdx. (5.19)
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By using (5.8) and (5.12), we get

Hα (t) ‖u‖22 ≤
(∫

Ω

|u|q ln |u|k dx
)α
‖u‖22

≤

 (∫Ω |u|q ln |u|k dx
)α+2/q

+
(∫

Ω
|u|q ln |u|k dx

)α
‖∇u‖4/q2

+
(∫

Ω
|u|q ln |u|k dx

)α
‖∇u‖4/qp

 .
From Young’s inequality, we have

Hα (t) ‖u‖22 ≤
(∫

Ω

|u|q ln |u|k dx
)α
‖u‖22

≤


(∫

Ω
|u|q ln |u|k dx

)(qα+2)/q

+ 2
q ‖∇u‖

2
+ q−2

q

(∫
Ω
|u|q ln |u|k dx

)αq/(q−2)

+ 4
pq ‖∇u‖

p
p + pq−4

pq

(∫
Ω
|u|q ln |u|k dx

)αpq/(pq−4)

 .
Hence, we get

Hα (t) ‖u‖22 ≤
(∫

Ω

|u|q ln |u|k dx
)α
‖u‖22

≤ C


(∫

Ω
|u|q ln |u|k dx

)(qα+2)/q

+ ‖∇u‖2 + ‖∇u‖pp

+
(∫

Ω
|u|q ln |u|k dx

)αq/(q−2)

+
(∫

Ω
|u|q ln |u|k dx

)αpq/(pq−4)

 ,

where C = max
{

2
q , q−2

q , 4
pq ,

pq−4
pq

}
.

By exploiting (5.14), we obtain

2 < αq + 2 ≤ q, 2 <
αq2

q − 2
≤ q and 2 < αpq ≤ pq − 4.

Thus, lemma 5.2 yields

Hα (t) ‖u‖22 ≤ C
(∫

Ω

|u|q ln |u|k dx+ ‖∇u‖22 + ‖∇u‖pp

)
. (5.20)
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By combining (5.19) and (5.20), we get

L′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t)

+ε

[
a− c

4c1κ

(∫ τ2

τ1

|µ2 (s)| ds
)]∫

Ω

|u|q ln |u|k dx

+ε

[
q (1− a)− 2

2
− c

4c1κ

(∫ τ2

τ1

|µ2 (s)| ds
)]
‖∇u‖2

+ε

[
q (1− a)− p

p
− c

4c1κ

(∫ τ2

τ1

|µ2 (s)| ds
)]
‖∇u‖pp

+
ε (1− a) k

q
‖u‖qq + ε

q (1− a) + 2

2
‖ut‖2 + εq (1− a)H (t)

+
εq (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s |µ2 (s)| |z (x, ρ, s, t)|2 dsdρdx. (5.21)

Since, choosing a > 0 so small, such that

q (1− a)− 2

2
> 0,

and choosing κ large enough, we get
q(1−a)−2

2 − c
4c1κ

(∫ τ2
τ1
|µ2 (s)| ds

)
> 0,

a− c
4c1κ

(∫ τ2
τ1
|µ2 (s)| ds

)
> 0,

q(1−a)−p
p − c

4c1κ

(∫ τ2
τ1
|µ2 (s)| ds

)
> 0.

Once κ and a are fixed, picking ε so small, such that

(1− α)− εκ > 0,

H (0) + ε

∫
Ω

u0u1dx > 0.

Thus, for some λ > 0, estimate (5.21) takes the form

L′ (t) ≥ λ
[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖pp + ‖u‖qq

+

∫
Ω

|u|q ln |u|k dx+

∫
Ω

∫ 1

0

∫ τ2

τ1

s (µ2 (s)) |z (x, ρ, s, t)|2 dsdρdx
]
, (5.22)

and
L (t) ≥ L (0) > 0, t ≥ 0. (5.23)

From the embedding ‖u‖2 ≤ c ‖u‖q and Hölder’s inequality, we get∫
Ω

uutdx ≤ ‖u‖2 ‖ut‖2 ≤ c ‖u‖q ‖ut‖2 ,
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then from Young’s inequality, we have∣∣∣∣∫
Ω

uutdx

∣∣∣∣1/(1−α)

≤ c
(
‖u‖µ/(1−α)

q + ‖ut‖θ/(1−α)
2

)
, for 1/µ+ 1/θ = 1. (5.24)

From Lemma 5.4, we take θ = 2 (1− α) which gives µ/ (1− α) = 2/ (1− 2α) ≤ q. Therefore, for
s = 2/ (1− 2α) , the estimate (5.24) satisfies∣∣∣∣∫

Ω

uutdx

∣∣∣∣1/(1−α)

≤ c
(
‖u‖sq + ‖ut‖22

)
.

Therefore, Lemma 5.4 satisfies∣∣∣∣∫
Ω

uutdx

∣∣∣∣1/(1−α)

≤ c
[
‖∇u‖2 + ‖ut‖2 + ‖u‖qq

]
. (5.25)

Hence,

L1/(1−α) (t) =

(
H1−α (t) + ε

∫
Ω

uutdx+
µ1ε

2

∫
Ω

u2dx

)1/(1−α)

≤ c

[
H (t) +

∣∣∣∣∫
Ω

uutdx

∣∣∣∣1/(1−α)

+ ‖u‖2/(1−α)
2

]

≤ c

[
H (t) +

∣∣∣∣∫
Ω

uutdx

∣∣∣∣1/(1−α)

+ ‖u‖2/(1−α)
q

]
≤ c

[
H (t) + ‖∇u‖2 + ‖ut‖2 + ‖u‖qq

]
, t ≥ 0. (5.26)

By combining (5.22) and (5.26), we get

L′ (t) ≥ ΛL1/(1−α) (t) , t ≥ 0, (5.27)

where Λ is a positive constant depending only on λ and c. A simple integration of (5.27) over (0, t)
yields

Lα/(1−α) (t) ≥ 1

L−α/(1−α) (0)− Λαt/ (1− α)
.

Thus, L (t) blows up in time T ∗

T ≤ T ∗ =
1− α

ΛαLα/(1−α) (0)
.

As a result, the proof is completed. q.e.d.

6 Conclusions

Recently, there has been published much works concerning the wave equations (Kirchhoff, Petro-
vsky, Bessel,... etc.) with different state of delay time (constant delay, time-varying delay,... etc.).
However, to the best of our knowledge, there were no existence, exponential decay and blow up
of solutions for the logarithmic p-Laplacian equation with distributed delay. We have been estab-
lished the global existence, exponential decay and blow up results for the logarithmic p-Laplacian
equation with distributed delay under appropriate conditions.
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[16] E. Pişkin and H. Yüksekkaya, Non-existence of solutions for a Timoshenko equations with weak
dissipation, Math. Morav., 22(2) (2018), 1-9.
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